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Equiconvergence of Two Fourier Series
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The Fourier expansion of a function in the polynomials orthonormal in
[-I, I] with respect to the weight function J(x) exp[u(x)], where J(x) is the
weight of the classical Jacobi polynomials and u(x) is a real function satisfying
some conditions, is studied. A comparison theorem on equiconvergence of this
series with certain trigonometric Fourier series is proved. ,~ 1995 Academic Press. Inc.

1. INTRODUCTION AND MAIN THEOREM

The generalized Jacobi polynomials {Qn(x)};:~o orthonormal m
1= [ - 1, 1] with respect to the weight function

Q(x) = (l - x)' (1 + x)fJ exp[u(x)], rx> -1, f3 > -1 (1)

were investigated in [1-3]. Here J(x) = (1 - x)~ (I + _,y is the weight of
the classical Jacobi polynomials and u(x) is a real function satisfying some
conditions.

In [1, Sect. 4,2] the differential equation for the polynomial Qn(x) was
derived. It has the form

Q' I(X)[ (1 - x 2) Q~(x) Q(x)]' + (1 - x 2) hn(x) Q~(x)

+ [).~+an(x)] Qn(x)=O, (2)

where )'n=Jn(n+rx+f3+1); all(x), hll(x) are the functions for which
lall(x)! <cln, Ibll(x)! <c2n~1 and C\, C2 are constants. This equation is
valid for the weight (1) with u(x) satisfying the following conditions:

1. u"'(x) exists in 1= [ -1, 1].
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2. If, for brevity, we put

Axf(/) =f(.~~=~(t),

o
V2(/) = (1- 12

) 01 AxU'(/),

then for i = 1, 2, 3, min( lX, fJ) ~ - ~ implies

(3)

where c is a constant; cr. [1, Sect. 4,2].
The sufficient condition for (3) is proved in [1, Sect. 4,3], where it is

readily seen that an arbitrary polynomial can be taken as an example for
the function u(x). Another example: u(x) = sin x or u(x) = cos x.

Because our results are concerned with the case min(lX, fJ) ~ -~, we do
not mention the conditions for the case min( lX, fJ) < -!.

In [2, Sects. 3,1, 3,2], Eq. (2) was transformed to

(4)

with z = arcsin x, z E [ - n12, n/2], y' = dyldz, y" = d 2y/dz 2
, Qn(z) = ),~ +

an(sin z) + y(z) - cos 2z[bn(sin z) + u"(sin z)J/2 - [bn(sin z) + u'(sin z)]
{[bn(sin z) +u'(sin z)] cos 2z- 2w(z) cos z- 2 sin z }/4, w(z) = (1 + lX + fJ) tg z+

(lX - fJ) sec z, y(z) = [w'(z) - w 2(z )/2 ]/2.
The function

fPn(z) = Qn(sin z) Jcos z Q(sin z) exp [ 1/2 (2 bn(sin I) cos I dlJ

is the solution of (4); cr. [2, Sect. 3,1]. For brevity denote

q(z) = Jcos z Q(sin z), qn(z) = Qn(sin z) q(z). (5)

It is easily seen that {qn(z)};:'~0 is the sequence of the functions orthonor­
mal in [-nI2, nl2J with respect to the weight v(z) = 1, because

f

1t/2 f1t/2
qm(z) qn(z) dz = Qm(sin z) Qn(sin z) cos z Q(sin z) dz

-1t/2 -1t12

m,n=O,I, ....
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In the above mentioned papers properties of the coefficients exn(z) and
the solutions <Pn(z) of (4) and also properties of the functions qn(z) given
in (5) were analyzed. The aim of the present paper is to study, on their
basis, the expansion of a function in the polynomials {Qn(x) },~~0' i.e., to
find conditions for the function when this expansion is equiconvergent with
certain trigonometric Fourier series. The main theorem is given at the end
of this section. We give its proof in Section 3 and in Section 2 we give the
preliminary lemmas used in the proof.

Throughout the paper we shall use the following notation:

(i) n is a natural number or O.

(ii) 1= [ - t, t].

(iii) If Q,,(x) = L% ~o aL")x"- k, then p" = a~,,-l)/a~") for n > 0; Po = O.

(iv) C j U= 1,2,3, ... ) are positive constants independent of n and of x
(of t and of z, respectively),

(v) {ei.n},~~1 (i= 1,2,3, ... ) is the sequence, for which lei.,,1 <cin- li2
•

(vi) If (a, b) is an interval then the space L(a, b) is defined as usual.

Remark l. The numbering of c; and ci,n' respectively, in each lemma
and theorem is independent of the numbering in the others.

Remark 2. The integrals in this paper are those of Lebesgue.

THEOREM. Let ex> -~, f3 > -~. Let f(x) be a function such that the
integral

L(1 - x 2
) - 1/2 f( x) dx =J:/:/2 f( sin t) dt

exists. Let

n

sn(x, f) = I akQk(X)
k~O

be the partial sum of the series

x

I akQk(X),
k~O

where ak = Lf(x) Qk(X) Q(x) dx. Then for x E (-1, 1)

f
"/2

s,,(x, f) = . f(sin t) D,,(z, t) dt + p",
-rr/2

where Z = arcsin x, lim" ~ % p" = 0, and Dn(z, t) is the Dirichlet kernel.

(6)

(7)

(8)

(9)
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The proof is given in Section 3.

COROLLARY. Let a> -~, (J> -~. Letf(x) be a function such that (6)
exists. If sn(x, f) is given by (7) and

(10)

is the partial sum of the trigonometric Fourier series in [-n, n] of the
function

l{;(z) = {~(Sin z) for Z E ( - n12, n12)

for Z E [ -n, n] - ( -nI2, nI2),

then limn ~x [Sn(X, f) - Sn(Z' l{;)] = o. So the series (8) and the trigonometric
Fourier series of t/J(z) in [ - n, n] are equiconvergent in the point x = sin z,
x E (-1, 1).

Proof Follows from the theorem.

Remark 3. In [4, Chap. IX], G. Szego gave an equiconvergence
theorem for the expansion of a function into a series of classical Jacobi
polynomials and certain trigonometric series. His theorem holds for
a> - 1, {J> - 1, x E ( - I, I) assuming for the function f(x) the existence of
two other integrals instead of (6). Integral (6) is the special case of both
Szego's assumptions (integrals) if !Y.={J= -~, but our theorem concerns
the case 0( > -!, f3 > -!.

2. PRELIMINARIES

Let sn(x, f) be the partial sum of the trigonometric Fourier series in
[ - n, n] of a function f(x). Let b > 0 be a number such that
(x-b,x+b)c(-n,n) and f(x)EL(-n,n). For Sn(x,f) and the
Dirichlet kernel D,Jx, t) we recall the well-known relations (d. [5])

Sn(X, f) = j'+b f(t) Dn(x, t) dt + cll(x),
x-o

If+b Dn(x, t)dtj <c, b-ln-
l
,

Ir: b

Dn(X,t)dtl<c2b-ln-l

(11 )

(12 )

(13 )
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and for n > e, x E (-n, n),

IS,,(x, f)1 < kin n,
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(14)

where k is independent of n but it depends on x.
The next lemmas describe some properties of the functions {qt/(z)};~~o

defined in (5):

LEMMA 1. Lef:x > - 1/2, f3 > - 1/2, Z E [ -n/2, n/2 J, a, bE ( -n/2, n/2),
and f E (z - 8, Z + <5) c ( -n/2, n/2) for <5 > O. Then

Iqll(z)! <C 1 ,

II: q,,(Z) q(z) dzi <c2n- 1
,

q;;(f) + n 2qt/(t) = rt/(f),

(15 )

(16)

(17)

Proof Inequality (15) is proved in [1, Sect. 2,9 J; (16) follows from the
inequality IS~ q,,(z) dzl < C4n-\ which is proved in [3, Theorem 3,3J
because q'(z) is bounded and integrable on any interval <a,h>c
( -n/2, n/2); (17) is proved in [3, Theorem 3,4].

LEMMA 2. For every z E [ - n/2, n/2J

f
n/2

qt/(z, t) q(t) df = q(z).
-:t/2

Proof

r2

q,,(z, f) q(f) dt = 'f qdz)ri2
qdf) q(f) df

- 7'r./2 k = 0 - 1r./2

n rr/2

= I qk(z)f' Qk(sinf)Q(sinf)coSfdf
k ~ 0 -11/2

= ±qk(Z) f Qk(X) Q(x) dx
k~O I

(18 )
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for k = 1, 2, ..., n.

(19)

Since Qo(.x) = aLol, the integral (18) has the form

as a consequence of the orthonormality of the system {qn(z)};~-::o'

LEMMA 3. For 'X > -!, fJ> - L ZE( - rr/2, rr/2), andj,,= (z-n -1/2, Z +n -1/2)

If[ _n/2,n/2] _ in q,,(Z, t) q(t) dtl < C I n -1/2.

Proof Put Z = arcsin x, t = arcsin u, x - U = s(t). Using the Christoffel­
Darboux formula we have

"
q,,(z, t) = L qk(Z) qk(t)

k~O

"= I Qk(X) Qk(U) q(z) q(t)
k~O

where 0 < P" + 1 = a~'J/a~' + I) < 1 (cf. [1, Sect. 2,3]). Then

r:2
,,_li2 q,,(z, t) q(t) dt

n/2

= Pn+ I f:+,,-li
2

[q,,+ I(Z) q,,(t) - q,,(Z) q,,+ l(t)] S-I(t) q(t) dt

= PH 1 S-1 (Z + n -1/2)r+ ,,_ li2 [q" + I (Z) q,J t) - q,,(Z) qH 1(t)] q(t) dt,

where the second mean-value theorem of the integral calculus was used.
Here (e(z+n- 1/2, n12) and the function -S-I(t) is obviously decreasing
in the interval (z, rr/2), To estimate our integral we use (15) and (16) and
we obtain

Ir:2

,,_li
2

q,,(z, t) q( t) dtl < Is -- I(Z +n -- 1/2)1 (C 2 n - 1+ c3n -1)

= Is-'(z+n 1/2)1 C4n-l. (20)
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Further

Is- 1(z+n- 1
/
2 )1=1· In. Ism(z + n - L~) - sm z

= 12 sin(~n- L/2 ) ~oS( Z + ~n - 1/2) I

<12cos(zn~2~n L/2)/

< c5 n 1
/
2

•

From (20) and (21) we get

Similarly we prove

I
f _n12 qn(Z, t) q(t) dtl < c7 n- 1i2.

-ni2

The inequality (19) follows from (22) and (23).
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(21 )

22

(23)

LEMMA 4. Let (X> - t, fJ> - ~. Assume that f(x) E L( - n/2, n/2), z E

( - n/2, n/2), and 15 > 0 is a numher such that - n/2 < Z - 15 < z + 15 < n/2.
Then

lim fn

i2 f(t)q,,(z,t)q(t)dt=O
n- % =+b

and

}~mN f :i: l(t) q,,(z, t) q(t) dt = O.

Proof We use the Christoffel-Darboux formula and the Riemann­
Lebesgue theorem, which holds also for uniformly bounded orthogonal
systems (cf. [5, Chap. II, Theorems (4.4), (4.6)J). The inequality (15)
shows that the system {q ,,( t) };'= a is uniformly bounded in [- n/2, n/2].

LEMMA 5. Let a>-t, f3>-t. Let zE(-n/2,n/2) and 15>0 be a
number such that j6 = (z - e5, z + e5) c ( - n/2, n/2). Then for every t Ej,j

q,,(z, t) q(t) = [q(z) + 1'1.,,] D,,(z, t) + a,,(t), (24)
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where {6,,( t) },~~ 0 is a uniformly bounded sequence in j,j and D ,,(z, t) is the
Dirichlet kernel.

Proof We use the differential equation (17) and the Christoffel­
Darboux formula, which imply

where s(t) = sin z - sin t, 0 < P" + , < 1. Denote Ij; ,,(t) = s( t) q,,(z, t). Then we
have

According to (17)

q;(t) = -(n+!fq,,(t)+{3,,(t),

q;;+ l(t) = - (n +!f q,,+ Ilt) +:'n(t),

where

(25)

(26)

(27)

{3n(t) = rn(t) + (n +~) qn(t),

with estimates

and

Substituting (26) and (27) into (25) we get the differential equation

Ij;;(t) + (n + 1l 2 Ij;n(t) = bn(t),

(28)

(29)

(30)

where b)t)=Pn+,[qn+Ilz){3n(t)-qn(z)}'n(t)]. The solution of (30) is the
function

Ij;n(t) = Vn sin[(n + 1)(z - t)] + 'In(t),

where vn for n = I, 2, 3, ... are constants and

2 I''In(t) =-- bn(u) sin[(n + 1)(t - u)] duo
2n + 1 z

Now we need to estimate v" and the function s l(t) 'lnU).

(31 )
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The estimate of vn: from (31)

r---.=

_ 'I' sin[(n + !)(z - I)] I' '1n(l)
-\n1m , , +lm, ,

t ~ z SIn Z - SIn t t - =SIn Z - SIn t

I
, (n+!)cos[(n+!)(z-t)] '1~(z)

=V 1m +---
n t ~ = COS I - COS Z

n+.!.
== l'n ---.1.,

COS z

hence

159

qn(z, Z) cos Z
0< V n = 1

n+"2

The estimate of 5
1(/)'1n(l): from (28), (29), and (15) for a> -!,

P> -!

hence l'1n(l)1 <c7 Iz- tl, From this

I Iz - tl Iz - II C7Is (I) '1n(l)1 < C7, , = C7 = --,
ISIn Z - SIn II Iz - II cos ~ cos ~

where the Lagrange mean-value theorem was used and ~ is a number
between z and t, i.e., ~ E}s. Hence we get

Further, we establish the constants Vn : Equation (31) yields

qn(z, t) q(t) = nvnq(z) Dn(z, t) sec z + Xn(l) + S -1(1) '1n(l) q(t),

where

Xn(l) = vn{s 1(/) sin[(n + !)(z - t)] q(/) -nq(z) Dn(z, t) sec z},

where for t E}s and for almost all natural numbers

IXII(/)I = IVIlII_si-,n[=-~n_+-=!)-,-(Z_-_t.c..=.)] [ q(t) - q(z) JI
2sm((z-t)/2) cos((z+t)/2) cosz

I 7+t II 7-
t

l<C8 q(t)secT-q(z)secz cosecT <C9 ,

(32)

(33)
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because the function g(t)=q(t)sec«(z+t)/2)-q(z)secz has the finite
derivative

g'(z)=~lim. g(t)
2 t ~ =sm( (t - z )/2)

Then

qAz, t) q(t) = nvllq(z) DII(z, t) sec z + O"II(t),

where according to (32) and (33) for 0( > -1, f3 > -1

1001I(t)1 = IXII(I) + s -1(1) '111(t) q(t)1 < C IO '

(34)

(35 )

Using the relations (18), (19), (12), and (13), where we put b = n - 1/2, and
the relation (35) from the equality

Jq,,(z, t) q(l) dt = nv"q(z) sec z JD,,(z, t) dt +JO",,(t) dt
~ .~-~

we get the relation

q(z) + G2." = nv"q(z) sec z(1 + G}.,,) + G4.,,'

because

From (36) we obtain nv"q(z) sec z = q(z) + G2." - G4." - £5.,,' i.e.,

cos Z
v"=--+£6,,'n .

and substituting it into (34) we get (24).

3. PROOF OF THEOREM

(36 )

Assume that f(x) is a function for which (6) exists. Then for any G> 0
there exists b > 0 such that for the interval j i5 = (z - b, z + b) c ( - n12, n12)

J If(sin t)l dt < e.
/6

(37)
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S,,(x, f) = {f(U) Q,,(X, U) Q(U) du = q I(Z) r~i2 f(sin t) q,,(z, t) q(t) dt,

where Z = arcsin x, t = arcsin u.
Using the relation (24) we get

S,,(X, f) = (1 + £,.,,) f f(sin t) D,,(z, t) dt
/6

+q-l(Z) f ' ,f(sin t)q,,(z, t)q(t)dt
[- ni2. ni 2 ]-I,

+ f f(sint)q-l(z)<J,,(t)dt.
I"

(38)

Since according to (5) and (35), Iq-'(z) <J,,(t)1 <C\ in j~, taking into
account (37), the following inequality is valid:

'L f(sin t) q' I(Z) <J,,(t) dtl < C 1 ·

Construct the function t/J(z) as follows:

(39)

t/J(Z)={~(SinZ) for Z E ( - n/2, n/2)
for Z E [ - n, nJ - (- n/2, n/2).

If 5,,(z, t/J) is given by (10), then according to (11) we express it in the
form

5,,(z, 1jJ) = f/2 f(sin t) D,,(z, t) dt
- ni2

where

640802·2

= f f(sin t) D,,(z, t) dt + £,,(z),
Ii>

(40)

(41 )
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Subtracting (40) from (38) for x = sin Z we have

= £1,/1 ff(sin t) D/I(z, t) dt
I"

+ q-I(Z) f . f(sin t) q/l(z, t) q(t) dt
[-,,/2.,,/21 jJ

+f f(sint)q I(Z) <J/I(t) dt-£/I(z),
16

where

1£1,/1 ff(sin t) D/I(z, r) dtl ~ 1£1./1/ [S/I(z, ljI) + 1£/I(z)1 ]
I"

with regard to (40) and (14), where

lim 1£1,/1 f f(sin t) D/I(z, t) dtl = O.
11 -- 'x-, .ib

Further

}~~ sup Ip/il ~ }~m>c 1£1./1 Lf(sin t) D/I(z, t) drl

+ }~~ \q-l(Z) [["/2,,,/2] -jb f(sin t) q/l(z, t) q(t) dtl

+ lim 1£/I(z)1

+ }~n:.. sup ILf( sin t) q -I (z) <J /I( t) dtl·

(42)

The first three limits on the right-hand side of this inequality are 0 in con­
sequence of (42), Lemma 4, and (41). Hence, with regard to (39),
limn ~ GC sup IPnl ~ Cl and as £ is any positive number, it yields

lim sup IPnl =0,
n_ :X

I.e.,

lim Pn=O.
n __ 'J..!
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